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Abstract

Graph convolutional network (GCN) has been successfully
applied to capture global non-consecutive and long-distance
semantic information for text classification. However, while
GCN-based methods have shown promising results in of-
fline evaluations, they commonly follow a seen-token-seen-
document paradigm by constructing a fixed document-token
graph and cannot make inferences on new documents. It is a
challenge to deploy them in online systems to infer steam-
ing text data. In this work, we present a continual GCN
model (ContGCN) to generalize inferences from observed
documents to unobserved documents. Concretely, we propose
a new all-token-any-document paradigm to dynamically up-
date the document-token graph in every batch during both the
training and testing phases of an online system. Moreover, we
design an occurrence memory module and a self-supervised
contrastive learning objective to update ContGCN in a label-
free manner. A 3-month A/B test on Huawei public opin-
ion analysis system shows ContGCN achieves 8.86% perfor-
mance gain compared with state-of-the-art methods. Offline
experiments on five public datasets also show ContGCN can
improve inference quality. The source code will be released
at https://github.com/Jyonn/ContGCN.

Introduction
As one of the fundamental tasks in natural language pro-
cessing, text classification has been extensively studied for
decades and used in various applications (Xu et al. 2019;
Abaho et al. 2021). In recent years, graph convolutional net-
work (GCN) has been successfully applied in text classifi-
cation (Yao, Mao, and Luo 2019; Lin et al. 2021) to capture
global non-consecutive and long-distance semantic informa-
tion such as token co-occurrence in a corpus.

A line of GCN-based methods (Li et al. 2019) perform
document classification by simply constructing a homoge-
neous graph with each document as a node and modeling
inter-document relations such as citation links, which how-
ever does not exploit document-token semantic information.
Another line of GCN-based methods constructs heteroge-
neous document-token graphs, where each node represents
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a document or a token, and each edge indicates a correlation
factor between two nodes. However, they commonly follow
a seen-token-seen-document (STSD) paradigm to construct
a fixed document-token graph with all seen documents (la-
beled or unlabeled) and tokens and perform transductive in-
ference. Given a new document with unobserved tokens, the
trained model cannot make an inference because neither the
document nor the unseen tokens are included in the graph.
Hence, while these methods are effective in offline evalu-
ations, they cannot be deployed in online systems to infer
streaming text data.

To address this challenge, in this paper, we propose a new
all-token-any-document (ATAD) paradigm to dynamically
construct a document-token graph, and based on which we
present a continual GCN model (ContGCN) for text classi-
fication. Specifically, we take the vocabulary of a pretrained
language model (PLM) such as BERT (Devlin et al. 2019)
as the global token set, so a new document can be tokenized
into seen tokens from the vocabulary. We further form a doc-
ument set which may contain any present documents (e.g.,
those in the current batch). The document-token graph then
consists of tokens in the global token set and documents in
the document set. The edge weights of the graph are dynami-
cally calculated according to an occurrence memory module
with historical token correlation information, and document
embeddings are generated with pretrained semantic knowl-
edge. In this way, ContGCN is enabled to perform inductive
inference on streaming text data.

Furthermore, to address data distribution shift (Luo et al.
2022) which is prevalent in online services, we design a
label-free online updating mechanism for ContGCN to save
the cost and effort for periodical offline updates of the model
with new text data. Specifically, we fine-tune the occur-
rence memory module according to the distribution shift of
streaming text data and update the network parameters with
a self-supervised contrastive learning objective.

ContGCN achieves favorable performance in both on-
line and offline evaluations thanks to the proposed ATAD
paradigm and label-free online updating mechanism. We
have deployed ContGCN in an online text classification sys-
tem – Huawei public opinion analysis system, which pro-
cesses thousands of textual comments daily. A 3-month
A/B test shows ContGCN achieves 8.86% performance gain
compared with state-of-the-art methods. Offline evaluations
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on five real-world public datasets also demonstrate the ef-
fectiveness of ContGCN.

To summarize, our contributions are listed as follows:
• We propose a novel all-token-any-document paradigm

and a continual GCN model to infer unobserved stream-
ing text data, which, to our knowledge, is the first attempt
to use GCN for online text classification.

• We design a label-free updating mechanism based on an
occurrence memory module and a self-supervised con-
trastive learning objective, which enables to update Con-
tGCN online with unlabeled documents.

• Extensive online A/B tests on an industrial text classifi-
cation system and offline evaluations on five real-world
datasets demonstrate the effectiveness of ContGCN.

Preliminaries
Graph Convolutional Network (GCN)
GCN (Welling and Kipf 2016) is a graph encoder that aggre-
gates information from node neighborhoods. It is composed
of a stack of graph convolutional layers. Formally, we use
G = (V, E) to denote a graph, where V(n = |V|) and E are
sets of nodes and edges, respectively. Note that each node
v ∈ V is self-connected, i.e., (v, v) ∈ E . We use X ∈ Rn×d
to represent initial node representations, where d is the em-
bedding dimension. To aggregate information from neigh-
borhoods, a symmetric adjacency matrix A ∈ Rn×n is in-
troduced, where Aij is the correlation score of nodes vi and
vj and Aii = 1. The adjacency matrix is normalized as

Ã = D−
1
2AD

1
2 , (1)

where D is a degree matrix and Dii =
∑
j Aij . At the k-th

convolutional layers, the node embeddings are calculated as:

H(k) = σ
(
ÃH(k−1)Wk

)
, (2)

where k ∈ {1, 2, . . . , h}, h is the total number of convolu-
tional layers, σ is the activation function, and Wk ∈ Rd×d
is a trainable matrix. Specifically, H(0) = X.

GCN-Based Text Classification
Text classification aims to classify documents into different
categories. Formally, we use D(m = |D|) to denote a set of
given documents, which can be split into a training set Dtrain
and a testing set Dtest. Each document s can be represented
as a list of tokens, s = (t

(s)
1 , t

(s)
2 , · · · , t(s)|s| ), where t(s)i ∈ T

is a token in the token vocabulary set T (u = |T |).
Existing GCN-based text classification methods (Yao,

Mao, and Luo 2019; Qiao et al. 2018; Lin et al. 2021) mainly
follow a seen-token-seen-document paradigm to construct
heterogeneous document-token graphs. Specifically, they
first form a seen vocabulary set Tseen of size u′ (Tseen ⊂ T ),
which contains all the seen tokens in the document set D.
Then, they construct a fixed document-token graph, whose
nodes include all the seen tokens in Tseen and all the given
documents in D. The adjacency matrix A of the graph is
shown in Figure 1a, which consists of a token-token sym-
metric matrix A(1) ∈ Ru′×u′

, a document-token matrix
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Figure 1: Comparison of the adjacency matrices. Left: seen-
token-seen-document (STSD) paradigm (e.g., BertGCN).
Right: proposed all-token-any-document (ATAD) paradigm.

A(2) ∈ Rm×u′
, and a document-document identity matrix

A(3) ∈ Rm×m. The adjacency matrix A is fixed. Finally,
GCN is applied to encode and classify the documents.

Method
The commonly adopted seen-token-seen-document (STSD)
paradigm only allows to infer seen documents due to its
transductive nature. To address this issue, we propose a
novel all-token-any-document (ATAD) paradigm that lever-
ages the global token vocabulary and dynamically updates
the document-token graph to make inferences on unob-
served documents.

Based on the ATAD paradigm, we propose a continual
GCN model, namely ContGCN, as illustrated in Figure 2,
which comprises of an adjacency matrix generator, a node
encoder, and GCN encoders. Specifically, given a batch of
input documents, the adjacency matrix generator updates
the adjacency matrix based on the occurrence memory mod-
ule and the current batch of documents, while the node en-
coder produces content-based node embeddings. The GCN
encoder is then employed to capture the global-aware node
representations. Finally, two training objectives are applied
to train the ContGCN model.

Proposed All-Token-Any-Document Paradigm

In contrast to the seen-token-seen-document paradigm,
which treats seen tokens (Tseen) and seen documents (D)
as fixed graph nodes, our proposed all-token-any-document
paradigm involves constructing a document-token graph
with all tokens (T ) and dynamic documents (i.e., a batch of
documents B = {s1, s2, · · · , sb} ⊂ D where b is the batch
size).

Our ContGCN model is designed based on the all-token-
any-document paradigm. We define all tokens as the vocab-
ulary used for PLM tokenizers, allowing unseen words to be
tokenized into sub-words that are already present in the vo-
cabulary. When a new batch of data is fed into the model,
the adjacency matrix and node embedding will be dynam-
ically updated by the adjacency matrix generator and node
encoder, respectively.



AM Generator

A(1)

A(2)

initialize

pooling

extract

compose

compose

mapping

post-pretrain 
classification 

loss

classification
loss

contrastive 
loss

GCN

GCN

PLM

Adjacency 
Matrix

Batch of  
Document

Occurrence 
Memory ModuleWikipedia 

Corpus

Testing Data 1

Testing Data N

Training Data

update

up
da

te

PLM-based 
Document 
Embedding

Document 
Embedding

Node 
Embedding

Jammed 
Node 

Embedding

Token 
Embedding

PLM-based 
Sequential 
Embedding

Node Encoder

Zn(i,:)

Zp
s(i)

Zn(b,:)

Zp
s(b)Zp

s(1)

Zn(1,:)

detach

E

M Xp

Xn

Z

d

Xp

Xn

Figure 2: Framework of our ContGCN model. Green dotted lines represent operations before each phase of model training or
testing. Two key components, i.e., AM Generator and Node Encoder, dynamically construct the adjacency matrix and generate
node embeddings, which are then fed into a GCN encoder. Finally, our ContGCN model is trained with a classification loss and
an anti-interference contrastive loss.

Adjacency Matrix Generator
As illustrated in Figure 1b, the adjacency matrix consists
of three matrices: a token-token matrix A(1) ∈ Ru×u, a
document-token matrix A(2) ∈ Rb×u, and a document-
document identity matrix A(3) ∈ Rb×b.

The token-token matrix A(1) is learned from the token
occurrence knowledge of the corpus and is phase-fixed. This
means that it will be refined when the model enters a new
training or testing phase with the emergence of new corpora
and token co-occurrence knowledge. The document-token
matrix A(2) is actively calculated based on the current batch
of data and is used to update the adjacency matrix dynam-
ically. Finally, the inner-document identity matrix A(3) en-
sures that each document is not influenced by other samples
during model learning or reasoning.

The Occurrence Memory Module (OMM) is a module
that incrementally records historical statistics, which in-
cludes a document counter s ∈ Z1 that keeps track of the
number of sentences, a token occurrence counter c ∈ Zu
that records the number of sentences in which a token ap-
pears, and a token co-occurrence counter C ∈ Zu×u that
records the number of times two tokens appear in the same
sentence. The OMM captures global non-consecutive se-
mantic information and offers the following benefits: 1) it
enables the dynamic calculation of the adjacency matrix for
any batch of documents, and 2) it stores a large amount
of previous general and domain-specific knowledge with-
out the need for recalculation during updates. We develop
a simple yet effective algorithm for updating the OMM, as
described in Algorithm 1. As shown in Figure 2, the OMM
is initialized with the Wikipedia corpus and updated by the
training or testing data before model training or testing.
Thus, A(1) will be phasely updated by PPMI (positive point-

wise mutual information), which is defined as:

A
(1)
i,j =

{
1, if i = j,

max
(

log
(
s

Ci,j

c(i,:)cj

)
, 0
)
, else.

(3)

To obtain the document-token correlation for each docu-
ment s ∈ B, we use TF-IDF (term frequency-inverse docu-
ment frequency), which is calculated as:

A
(2)
s,t =

g(s, t)

|s|
log

s

ct + 1
, (4)

where g(s, t) represents the number of times token t appears
in document s. The inner-document matrix A(3) is an iden-
tity matrix, denoted as:

A
(3)
i,j =

{
1, if i = j,

0, else.
(5)

Finally, the adjacency matrix A can be composed by:

A =

(
A(1) A(2)>

A(2) A(3)

)
. (6)

Node Encoder
The effectiveness of pretrained language models (PLMs)
such as BERT (Devlin et al. 2019), RoBERTa (Liu et al.
2019), and XLNet (Yang et al. 2019a) for text modeling has
been widely demonstrated in various scenarios. Therefore,
we utilize a PLM as a document encoder to capture seman-
tic information for each document s ∈ B:

E(s) = PLM(s) ∈ Rl×d, (7)

where l is the maximum document length for PLM, and each
row of E is a token embedding. We append special< PAD >



Algorithm 1: Continual OMM updating algorithm
Input : A corpus or dataset D, and OMM counters

s, c, and C

Update document counter, i.e., s← s+ len(D);
for each document in the corpus or dataset D do

for each sentence in the document do
Update the count of token ti if it appears in

current sentence, i.e., c[ti]← c[ti] + 1;
for each token pair ti and tj in the sentence

do
if ti 6= tj then

Update the co-occurrence count, i.e.,
C[ti][tj ]← C[ti][tj ] + 1;

end
end

end
end
Output: Updated OMM counters s, c, and C

tokens to short documents to align their length with other
documents in the batch, following BERT. We average the
hidden states of the first and last Transformer layers follow-
ing previous works (Li et al. 2020; Su et al. 2021). We then
perform an average pooling operation on E(s) to obtain the
unified document embedding d(s) ∈ Rd. Following Bert-
GCN (Lin et al. 2021), we form a batch-wise node embed-
ding Xn ∈ R(u+b)×d:

Xn =
(
0, · · · ,0,d(s1), · · · ,d(sb)

)>
, (8)

where d(sj) is the embedding of document j in the current
batch B. However, the document embeddings will cause in-
terference among one another when doing node message
passing by GCN. To avoid interference, for each document
j in the batch, we form a sample-specific node embedding
Xp

(sj)
∈ R(u+b)×d by:

Xp
(sj)

=
(
M(sj),0, · · · ,0,d

(sj),0, · · · ,0
)>

, (9)

where M(sj) ∈ Ru×d is a sample-specific token embedding
matrix of document j:

M(sj)(i, :) =


E(sj)(k, :), if token i of the vocabulary

is the k-th token in sj ,

0, otherwise.
(10)

We refer to Xn as the jammed node embeddings for all
documents in the current batch, and Xp

(s) as the unjammed
node embedding of a single document s.

GCN Encoder
Once the adjacency matrix (A) and node embeddings (un-
jammed Xp

(s) and jammed Xn) are generated, the GCN en-
coder is applied to obtain graph-enhanced node representa-
tions. We denote the GCN-encoded unjammed and jammed

node representations as X̄p
(s) and X̄n, respectively. Next, we

extract the document embeddings from X̄p
(sj)

(∀sj ∈ B) to
form Z ∈ Rb×d (see Figure 2), i.e.,

Z(j, :) = X̄p
(sj)

(j + u, :). (11)

Z will be used in the classification task. We then extract the
document embeddings from X̄p

(sj)
to form Zp(sj) ∈ Rb×d

and those from X̄n to form Zn ∈ Rb×d by:

Zp(sj)(i, :) = X̄p
(sj)

(i+ u, :) and (12)

Zn(i, :) = X̄n(i+ u, :), (13)

as illustrated in Figure 2. Zp(sj) and Zn will be used in the
anti-interference contrastive task.

Training Objectives
To train the model, we employ two tasks: a document clas-
sification task and an anti-interference contrastive task.

The document classification task utilizes a multi-layer
perceptron (MLP) classifier f : Rd → Rc (c is the num-
ber of document classes) with a softmax activation function
to infer the probability distribution over all classes. The loss
function can be defined as:

Lcls = −1

b

b∑
j=1

log
(
f (Z(j, :))lj

)
, (14)

where lj is the class label of the j-th document.
For the anti-interference contrastive task, the goal is to

learn a representation space where semantically similar doc-
uments are closer to each other and dissimilar documents
are farther apart. Hence, in the contrastive task, we enforce
the GCN encoder to learn a mapping such that the jammed
embedding of document j (i.e., Zn(j, :)) is close to its un-
jammed embdding (i.e., Zp(sj)(j, :)) while distant from the
embeddings of other documents (i.e., Zp(sj)(k, :), k 6= j) in
the batch. The loss function can be calculated by:

Laic = −1

b

b∑
j=1

log
(
y(sj)(j)

)
,where (15)

y(sj) = softmax
(
Zp(sj) (Zn(j, :))

>
)
∈ Rb. (16)

The anti-interference contrastive task helps to learn repre-
sentations robust to the interference between documents.

The overall loss function is a combination of the classi-
fication and contrastive tasks with a balancing parameter λ,
denoted as:

L = Lcls + λLaic. (17)

Label-free Updating Mechanism (LUM). The occur-
rence memory module and the anti-interference contrastive
task enables to continually update our ContGCN model with
incoming unlabeled text data during inference. Hence, we
name it label-free updating mechanism (LUM).



Model Training and Update

The training and updating of the ContGCN model involves
three stages.

Stage 1: Before training. Prior to training, we perform
post-pretraining on the pre-trained language model by us-
ing the classification task on the PLM-enhanced document
embeddings. This pre-training helps to speed up the conver-
gence of the model during the training process.

Stage 2: During training. During the training process,
we use the multi-task training objective (Eq. 17) to train the
ContGCN model.

Stage 3: During inference. When new test data is avail-
able, we first update the occurrence memory module using
Algorithm 1. We then finetune the ContGCN model using
the auxiliary anti-interference contrastive task (Eq. 15) to
improve model performance during inference.

Experiments

Experimental Setups

Datasets. As described in (Lin et al. 2021), we have
performed experiments on five text classification datasets
which are commonly used in real-world applications: 20-
Newsgroups (20NG), Ohsumed, R52 Reuters, R8 Reuters,
and Movie Review (MR) datasets. Table 1 presents the sum-
marized statistics of these datasets. We randomly chose 10%
of the training set for validation purposes for all datasets.

Baselines and Variants of Our Method. To validate the
effectiveness of our proposed ContGCN model, we com-
pare it with three types of state-of-the-art models:: 1) tradi-
tional GCN-based models that do not utilize pretrained gen-
eral semantic knowledge, including TextGCN (Yao, Mao,
and Luo 2019) and TensorGCN (Liu et al. 2020); 2)
transformer-based PLMs, including BERT (Devlin et al.
2019), RoBERTa (Liu et al. 2019) and XLNet (Yang et al.
2019b); 3) models that combine GCN with PLM, including
TG-Transformer (Zhang and Zhang 2020), BertGCN (Lin
et al. 2021) and RoBERTaGCN (Lin et al. 2021). As our
ContGCN can be plugged by different PLMs, we adopt
BERT, XLNet, and RoBERTa as alternatives, denoted as
ContGCNBERT, ContGCNXLNet, and ContGCNRoBERTa.

Implementation Details. We adopt the Adam opti-
mizer (Kingma and Ba 2015) to train the network of our
ContGCN model and the baseline models, which are consis-
tent in the following parameters. The following parameters
are kept consistent across all models: the number of graph
convolutional layers, if applicable, is set to 3; the embed-
ding dimension is set to 768; and the batch size is set to 64.
In the post-pretraining phase, we set the learning rate for
PLM to 1e-4. During training, we set different learning rates
for PLM and other randomly initialized parameters includ-
ing those of the GCN network, following Lin et al. (2021).
Precisely, we set 1e-5 to finetune RoBERTa and BERT, 5e-6
to finetune XLNet, and 5e-4 to other parameters. We average
the results of 10 runs as the final evaluation results.

Dataset 20NG R8 R52 Ohsumed MR
# Docs 18,846 7,674 9,100 7,400 10,662
# Training 11,314 5,485 6,532 3,357 7,108
# Test 7,532 2,189 2,568 4,043 3,554
# Classes 20 8 52 23 2
Avg. Length 221 66 70 136 20

Table 1: Dataset statistics.

Models 20NG R8 R52 Ohsumed MR
TextGCN 86.3 97.1 93.6 68.4 76.7
TensorGCN 87.7 98.0 95.0 70.1 77.9

BERT 85.3 97.8 96.4 70.5 85.7
RoBERTa 83.8 97.8 96.2 70.7 89.4
XLNet 85.1 98.0 96.6 70.7 87.2

TG-Transformer - 98.1 95.2 70.4 -
BertGCN 89.3 98.1 96.6 72.8 86.0
RoBERTaGCN 89.5 98.2 96.1 72.8 89.7

ContGCNBERT 89.4 98.3 96.9 73.1 86.4
ContGCNXLNet 89.7 98.5 97.0 73.1 88.7
ContGCNRoBERTa 90.1 98.6 96.6 73.4 91.3

Table 2: Comparison of ContGCN with state-of-the-art
models in offline evaluation. The best results are in boldface,
and the second best results are underlined.

Offline Evaluation
We conduct an offline evaluation of our ContGCN model
and state-of-the-art baselines on five datasets. Table 2
presents the overall performance of all methods, and the fol-
lowing observations can be made. First, PLM-only meth-
ods mostly outperform GCN-only methods due to their pre-
learned semantic knowledge. However, GCN-only methods
can build more document-token edges for better seman-
tic comprehension on datasets with long documents, such
as 20NG, but they struggle on datasets with short docu-
ments, such as MR. Second, PLM-empowered GCN meth-
ods combine the strengths of both PLMs and GCNs and
outperform both PLM-only and GCN-only methods. Third,
our ContGCN model achieves state-of-the-art performance
on five datasets, thanks to 1) the proposed all-token-any-
document paradigm that leverages general semantic knowl-
edge from a large Wikipedia corpus and 2) the proposed con-
trastive learning objective that reduces inter-document in-
terference. Notably, our ContGCNRoBERTa achieves the best
performance on four datasets.

Ablation Study
First, we study the effect of different components of Con-
tGCN, including Wikipedia initialization, OMM updating,
and anti-interference contrastive task on offline perfor-
mance. Based on the results from Table 3, we can con-
clude the following. First, on the 20NG dataset, we ob-
served that Wikipedia initialization is less effective, which
is likely because the lengthy documents already contain
sufficient non-consecutive knowledge during OMM updat-
ing. Apart from this, removing any of these components



Models 20NG R8 Ohsumed
ContGCNRoBERTa 90.1 98.6 73.4

w/o Wikipedia Init 89.9 98.2 73.1
w/o OMM Updating 89.6 98.3 73.0
w/o Contrastive Loss 89.7 98.5 73.2

ContGCNXLNet 89.7 98.5 73.1
w/o Wikipedia Init 89.8 98.3 72.8
w/o OMM Updating 89.4 98.2 72.7
w/o Contrastive Loss 89.5 98.2 73.0

Table 3: Influence of Wikipedia initialization, OMM updat-
ing, and the anti-interference contrastive task.

Variants 1/6 2/6 3/6 4/6 5/6 6/6
ContGCN∗ 86.4 87.3 88.1 88.6 89.0 89.6

ContGCN 86.3 87.1 87.8 88.2 88.7 89.1
ContGCNα 86.1 86.9 87.5 87.9 88.3 88.7
ContGCNβ 86.0 86.2 86.4 86.6 86.9 87.1

Table 4: Comparisons of variants of ContGCNRoBERTa in the
online learning scenario on the 20NG dataset. ContGCN∗ is
retrained from scratch in each session with all previously
seen data. ContGCNα is updated without the contrastive
loss. ContGCNβ is updated without LUM.

leads to a decline in performance for both ContGCNRoBERTa

and ContGCNXLNet on three datasets, confirming their ef-
fectiveness. Second, models without OMM updating show
the worst performance, indicating the importance of non-
consecutive semantic information in training and testing.

Next, we study the updating strategy of ContGCN in
the online learning scenario. As shown in Table 4, we
can make the following observations. First, by compar-
ing ContGCN with ContGCNα and ContGCNβ , it can be
seen that both OMM updating and the contrastive loss are
effective. Second, compared with retraining from scratch,
i.e., ContGCN∗, ContGCN requires less computational re-
sources and time to update yet still achieves competitive per-
formance.

Impact of Anti-interference Contrastive Learning

Here, we study the balancing parameter λ which weights
the auxiliary anti-interference contrastive loss. We conduct
experiments on the 20NG, R8 and Ohsumed datasets with
ContGCNRoBERTa model, varying λ in {0.001, 0.01, 0.02,
0.03, 0.05, 0.10, 0.20}. As demonstrated in Figure 3, we
can make the following observations. First, the reliance on
the auxiliary task varies for different datasets. Specifically,
the model achieves the best performance on the 20NG, R8,
and Ohsumed datasets when λ is set to 0.03, 0.02, and 0.05,
respectively. Second, for each dataset, as λ increases, the
performance first increases and then decreases. Hence, it is
essential to select a good λ.

20NG R8 OHSUMED
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Figure 3: Influence of the parameter λ that weights the anti-
interference contrastive loss. Relative accuracy (%) means
the difference between the accuracy achieved with λ = λ0
and that achieved with λ = 0.

Online Evaluation
Fixed Testing Data. Figure 4 illustrates the performance
of our model and baselines in an online learning sce-
nario where the training/updating data is incremental and
the testing data is fixed. Based on the results, we can
draw the following observations: First, GCN-based meth-
ods such as TextGCN and RoBERTaGCN cannot be up-
dated and are incapable of reasoning about unobserved
data as they construct fixed graphs based on the orig-
inal corpus. Therefore, their performance remains con-
stant over time, as shown by the dotted lines in Fig-
ure 4a. Second, as the updating data increases, the perfor-
mance of all updatable models improves. Third, our pro-
posed ContGCN method outperforms all baselines in all
sessions. Fourth, due to the limitations of STSD-based
GCN methods, we introduce a RoBERTaGCNscratch model
that retrains from scratch in each session with all pre-
viously seen data. However, this model still falls short
compared to ContGCNRoBERTadue to the utilization of
Wikipedia Initialization and the unjammed node embedding
in ContGCNRoBERTa. Moreover, as illustrated in Figure 4b,
the updating time of RoBERTaGCNscratch increases almost
linearly w.r.t. data size, making it unsuitable for online learn-
ing. The finetuning time ratios of ContGCN and RoBERTa
are closer to or less than 1, indicating that for these models,
each session takes up a comparable amount of time.

Fixed Training Data. We have deployed ContGCN on
Huawei public opinion analysis system, under the scenario
that the training data is fixed and the updating/testing data is
incremental. We use an optimized variant of RoBERTa (Liu
et al. 2019) – RoBERTawwm-ext (Xu 2021), tailored for
Chinese text classification, which will still be referred
to as RoBERTa below and in Table 5. We implement
RoBERTaGCN by plugging RoBERTa into BertGCN (Lin
et al. 2021), which cannot infer unobserved documents due
to the STSD scheme and hence the results are unavail-
able in the following months. We then implement ContGCN
based on RoBERTa and the proposed ATAD scheme, i.e.,
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Figure 4: Comparison between our ContGCN model and
baselines in an online learning scenario. We divide the 20NG
dataset into training, testing, and updating sets by the ratio
of 2:2:6. We trained each model with the training set to learn
an initial version. Then, we divided the updating set into six
equal parts and gradually fed each part to the model for fine-
tuning. The finetuning time ratio in (b) is calculated by the
finetuning time of the current session over that of the first
session. For each training or updating session, we used 10%
of the training set as the validation set.

Models 0th 1st 2nd 3rd
RoBERTaGCN 91.7 N/A N/A N/A

RoBERTa 87.6 86.8 85.2 83.5
ContGCNβRoBERTa 92.8 90.3 89.9 88.2
ContGCNRoBERTa 92.8 92.5 92.0 90.9

Table 5: Comparison of our ContGCN model with
RoBERTa in an industrial online learning scenario. All mod-
els are first trained offline (in the 0th month) with a labeled
dataset. After deployed, ContGCNRoBERTa performs online
learning with LUM. ContGCNβRoBERTa is a static network
with parameters fixed after the initial training.

ContGCNRoBERTa. After RoBERTa and ContGCNRoBERTa

were trained offline initially (i.e., in the 0th month), we de-
ploy them online for comparison. As illustrated in Table 5,
our ContGCNRoBERTa has achieved 5.94%, 6.57%, 7.98%,
and 8.86% gains in accuracy over RoBERTa in the 0th, 1st,
2nd, and 3rd month respectively. Besides, due to the distri-
bution shift of public opinions, the accuracy drops slightly
over time. However, ContGCNRoBERTa still maintains higher
performance than RoBERTa. Furthermore, by removing the
label-free update mechanism (i.e., ContGCNRoBERTa

β), the
performance drops significantly, which demonstrates the ca-
pability of our ContGCN model in continual learning.

Related Work
Graph Convolutional Network. Graph Convolutional
Networks (Welling and Kipf 2016) (GCNs) have become
increasingly popular in recent years due to their ability to
capture the structural relations among data (Hamilton, Ying,

and Leskovec 2017; Li, Han, and Wu 2018). They can learn
representations of graph data by propagating information be-
tween nodes in the graph. The popularity of GCNs can be
attributed to their versatility and effectiveness in various ap-
plications (Zhang et al. 2019), including image classifica-
tion (Hong et al. 2020), video understanding (Huang et al.
2020), social recommendation (Fan et al. 2019), and text
classification (Yao, Mao, and Luo 2019; Lin et al. 2021).

Text Classification. Text classification is a critical and
fundamental task in the field of natural language pro-
cessing. Early studies (Jacovi, Sar Shalom, and Goldberg
2018; Sari, Rini, and Malik 2019) utilize word embed-
ding methods (Mikolov et al. 2013; Pennington, Socher,
and Manning 2014) or apply traditional models (Zhang,
Zhao, and LeCun 2015; Lai et al. 2015) such as convo-
lutional neural networks (Krizhevsky, Sutskever, and Hin-
ton 2012) or recurrent neural networks (Rumelhart, Hinton,
and Williams 1985) to learn textual knowledge. In recent
years, Transformer-based pretrained language models such
as BERT (Devlin et al. 2019) have been introduced (Sun
et al. 2019) for text classification due to its strong ability
of semantic comprehension. However, these models do not
effectively utilize global semantic information such as token
co-occurrence in a corpus.

GCN-based Text Classification. GCNs have been gain-
ing attention in text classification, owing to their ability to
model non-structured data and capture global dependencies,
such as high-order neighborhood information (Yao, Mao,
and Luo 2019; Lin et al. 2021). Unlike some GCN-based
methods (Li et al. 2019; Xie et al. 2021; Li et al. 2021) that
construct homogeneous document graphs, we follow Yao,
Mao, and Luo (2019) to construct a document-token graph
to better capture semantic relations. In contrast to previous
methods that typically construct fixed graphs and are lim-
ited in their ability to reason about unobserved documents,
our proposed ContGCN model employs an all-token-any-
document paradigm, enabling making inferences on new
data in online systems.

Conclusion
To deploy GCN-based text classification methods to online
industrial systems, we propose a ContGCN model with a
novel all-token-any-document paradigm and a label-free up-
dating mechanism, which endow the model the ability to
infer unobserved documents and enable to continually up-
date the model during inference time. To our knowledge,
this is the first attempt to use GCN for online text classifi-
cation. Extensive online and offline evaluations validate the
effectiveness of ContGCN, which achieves favorable perfor-
mance compared with various state-of-the-art methods.
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